Introduction of KOMIR (Korea Mine Rehabilitation and mineral Resources Corporation), Sanha E&C, and their experiences for mine closure consulting and techniques

Dec. 20, 2022

Min Jang

Professor, Kwangwoon University, Seoul, South Korea Former member of MIRECO (former to KOMIR) +82-10-4687-6338, <u>heejaejang@gmail.com</u>, <u>minjang@kw.ac.kr</u> <u>https://scholar.google.com.sg/citations?user=HhsxdJwAAAAJ&hl=en</u> <u>https://www.jentl.net/</u>

Career, publication and projects

•	1999.09 – 2003.10	PhD	Univ. Wisconsin-Madison
•	2016.03 – 2016.03	Associate Prof.	Kwangwoon University
•	2012.10 - 2016.03	Professor	University Malaya (Malaysia)
•	2014.09 - 2017.08	Associate Editor	Chemosphere (Elsevier)
•	2006.12 - 2012.10	Part Leader	Korea Mine Reclamation Corp.
•	2006.01 - 2006.12	Postdoc Fellow	Penn State University, USA
•	2003.10 - 2005.12	Postdoc Fellow	Univ. Wisconsin-Madison, USA
•	1999.09 - 2003.10	Research Assis.	Univ. Wisconsin-Madison, USA
•	1998.05 – 1999.06	Researcher	Korea Institute of Science and Tech.

- Research field: Development of economical nano-structured adsorbents and catalysts, for treating organic and inorganic toxic pollutants.
- Publication: > 150 peer reviewed articles on the arsenic and heavy metals remediation, mine reclamation, and <u>advanced oxidation process (AOP).</u> WORLD'S TOP 2% SCIENTISTS IDENTIFIED BY STANFORD UNIVERSITY (2020, 2021, 2022 Environmental science field)
- Oversea projects experience: mine reclamation and closure plan, environmental nanotechnologies, geochemistry, and process water treatments.

Contents

01 Introduction of KOMIR

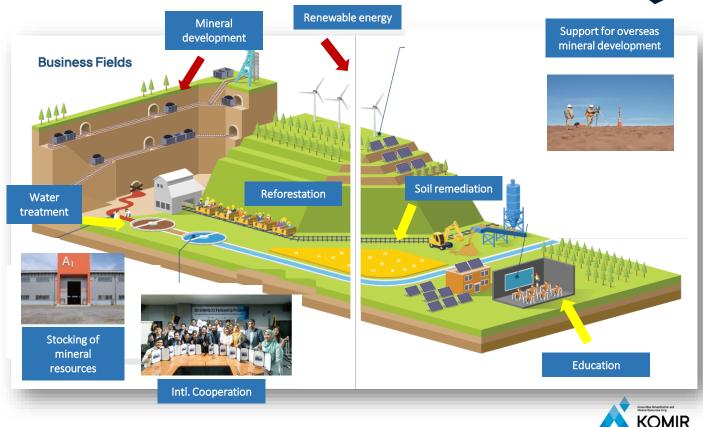
02 Mine Water Treatment

03 Introduction of Sanha E&C and their Technology

01 Introduction of KOMIR

Objectives of establishment

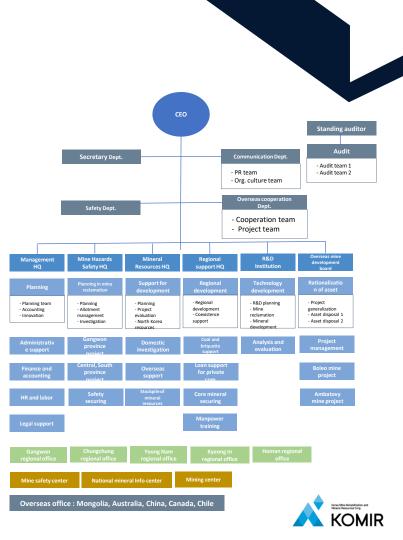
- <u>Revitalize the mining area economy</u> by managing mine damage and supporting the mineral resources industry
- <u>Contribute to the development of the national economy</u> by promoting the stable supply and demand of mineral resources



Main tasks

- <u>Investigation/technology development and mine reclamation businesses to prevent</u> <u>and restore environmental damages caused by mine development</u>
- <u>To revitalize the economy of the abandoned mine area</u> through abandoned mine area promotion projects
- International cooperation projects for overseas expansion of mine reclamation
 projects
- National technical qualification examination projects and specialized mining education for mining manpower training
- To stabilize coal price and establish coal/briquette distribution order by coal and briquette industry support project
- Technology and fund support and technology development necessary to secure domestic and foreign mineral resources
- Mineral stockpiling project to strengthen national resource security function

Main tasks



Organization

- 4 Headquarters, 29 Offices,
- 5 branches, 3 centers, 5

overseas offices

Mine hazards prevention and recovery (1)

(Mine damage) Investigation of mine damages every 5 years

- <u>Mine damages confirmed at 7,181 locations in 3,300 mines out of 5,800 operating/</u> <u>abandoned mines</u>

(Procedure of reclamation) "Act on the prevention and recovery of mine damage Article 7" Reclamation basic plan (5 yr) \rightarrow Reclamation action plan \rightarrow Reclamation business plan \rightarrow Reclamation project \rightarrow Management of reclamation projects

(Reclamation project) Investigation of mine damage factors, design, restoration works and follow-up management

- As the end of 2021, a total 1566 locations (21.8%) projects completed

Main tasks of KOMIR Mine hazards prevention and recovery (2)

(Water treatment)

- Damage prevention caused by mine drainage
- Application of water treatment method according to site and water quality characteristics
- Maintenance and management of water treatment facilities (59)

(Soil remediation)

- <u>Creating safe agricultural environmental around</u>
 <u>mines</u>
- Farmland function maintenance based on economic feasibility
- Compensation system during restoration project (Tailing release prevention)
- Pollutants removal, stabilization, detoxification
- Maintenance and management of tailing storage facilities (59)

Main tasks of KOMIR Mine hazards prevention and recovery (3)

(Forest and land restoration)

- Restoration of damaged forests
- Planting suitable tree species by region
- Measures to prevent waste rock loss

(Prevention and restoration of ground subsidence)

• Ground stability investigation, ground reinforcement and restoration

(Noise, Vibration, Dust Prevention)

 Installation support for soundproof walls, dust collection facilities, and wheel washing facilities

Mine damage information integrated management system (MiRe GIS)

Research and development of core technology

• (Prevention of mine damage) Development and application of on-site technology suitable

for mine damage site

• (Resources development) Technology for resource development and improving added value

of minerals

National technical qualification examination project and specialized mining education

National technical qualification examination project) National technical qualification certification for 7

categories of mining resources field (mine damage, resources)

• (Specialized mining education) Specialized education and training for mining resources field and safety

education for mine workers

Domestic resource development support project to private sector (1)

• (Exploration support) Exploration support project to secure stable mineral resources supply

- Detailed exploration, Korea Mineral Resources Geographic Information System (KMRGIS) establishment,

National Mineral Info Center operation, etc.

• (Development support) Support project to improve resources development productivity and added value

- Prospecting and excavation of metal minerals, modernization development, smart mining

Korea Mineral Resources Geographical Information System (KMRGIS)

KOMIR

Domestic resource development support project to private sector (2

- (Loan support) Loan support for mining right holders, quarry workers, mineral processors
 - Mining fund loan, mineral products processing fund loan, stone and aggregate industry fund loan

- (Mine safety management) Safety securing to prevent accidents and minimize damages in mines
 - Mine safety facilities and technology support, mine safety rule review, mine safety education, mine
- safety promotion

Oversea resource development support project to private sector

• (Exploration support) Conducting and supporting exploration cost at initial stage of oversea resources <u>development</u>

- (Technical support) Providing technical support to private oversea resource development by field experts
- (Matching service) Providing investment info about oversea promising projects and supporting exploration technologies
- (Incubating exploration) Transferring to private sector the promising businesses discovered and explored

by KOMIR

- (Technology consulting) Providing combined technical consulting with KOMIR's mine valuation capabilities

International cooperation of KOMIR

Current status of international cooperation projects (1)

- International cooperation projects with major mining countries to contribute to sustainable worldwide mining development
 - (International exchange and cooperation business)
 - · Signed 69 business agreements with 19 countries including MOU (28 cases)
 - Held 133 times in 39 countries, including invitational training and local seminars (about 4,130 people)
 - (ODA, consulting, etc) Total 124 cases, received 35.7 billion KRW project order
 - * 88 cases in the public sector including ODA, and conducted 28.3 billion KRW projects
 - Consulting 36 cases for overseas institutions and small and medium sized enterprises (SMEs), Conducted 7.4 billion KRW project
- (Support for Overseas expansion of SMEs) Global win-win cooperation network operation (29 companies participated)

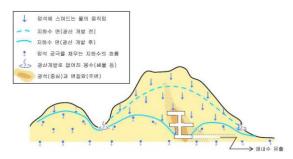
02 Mine Water Treatment

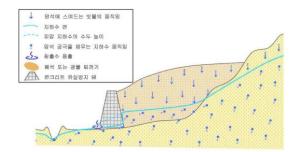
Deleterious effects of AMD

- Water (groundwater) contamination and restriction for water use
- Breakout of eco-system and harmful effects for human health
- Sight damages by sediments
- Corrosion for facilities and equipments
- Spread-out of bad images and cause of reclamation expenses

I Sulfur Containing Minerals

FeS ₂ -	pyrite
FeS ₂ -	marcasite
Fe _x S _x -	pyrrhotite
Cu₂S -	chalcocite
CuS -	covellite
CuFeS ₂ -	chalcopyrite


- MoS_2 molybdenite NiS
 - millerite _
- PbS galena
- ZnS -
- FeAsS -
- sphalerite arsenopyrite



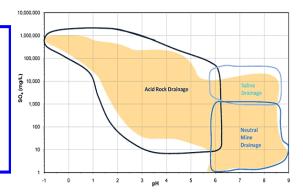
Classification of Mine Water

Form of discharge

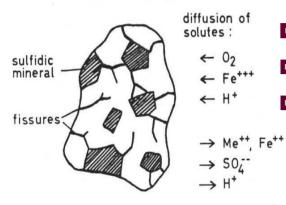
- Mine drainage : underground, open pit
- Leachate : tailings, waste rock dump

Ore deposit

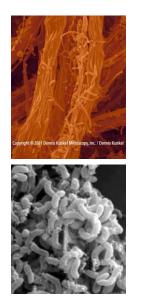
- Coal mine water
- Metal mine water
- Non- metal mine water

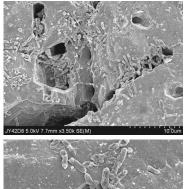


Formation of AMD

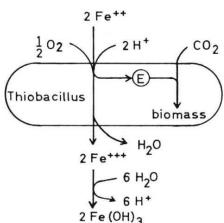


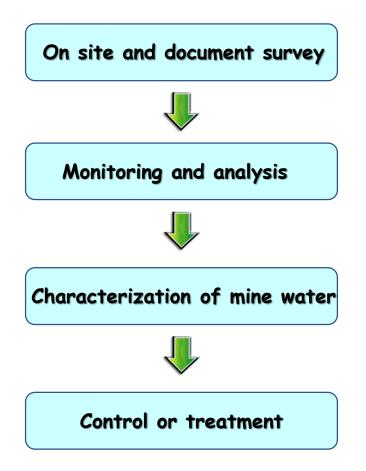
Prevention of water and air will stop the weathering of pyrite and marcasite

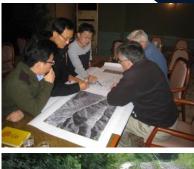

$$\begin{split} & \mathsf{FeS}_2 + 3.5O_2 + \mathsf{H}_2\mathsf{O} \to \mathsf{Fe}^{2+} + 2\mathsf{SO}_4^{2-} + 2\mathsf{H}^+ \\ & \mathsf{Fe}^{2+} + 0.25O_2 + \mathsf{H}^+ \to \mathsf{Fe}^{3+} + 0.5\mathsf{H}_2\mathsf{O} \\ & \mathsf{Fe}^{3+} + 3\mathsf{H}_2\mathsf{O} \to \mathsf{Fe}(\mathsf{OH})_3 \downarrow + 3\mathsf{H}^+ \\ & \mathsf{FeS}_2 + 14\mathsf{Fe}^{3+} + 8\mathsf{H}_2\mathsf{O} \to 15\mathsf{Fe}^{2+} + 2\mathsf{SO}_4^{2-} + 16\mathsf{H}^+ \end{split}$$



Iron Oxidizing Bacteria (IOB, Thiobacillus)


AMD maker, Aerobic bacteria
 Gram-negative, rod-shaped
 Acidophilic : requiring pH 1.5~3.5

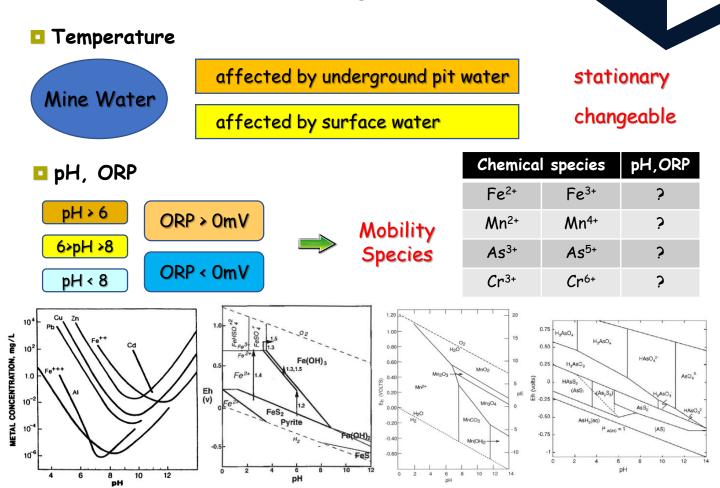




조강희 외**, 2010**

Assessment Procedure of Mine Water

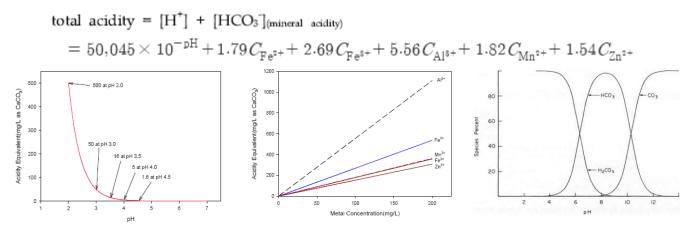
Survey of Mine Water


On-the-spot and document survey

- geology, topography, hydro-geology, water system,
- related regulation, treatment target, weather, precipitation etc.

Analytical variables to confirm characteristics of mine water

Site	Variables	unit	Filtering	Reasons for inclusion
On- site	Temp., Flow rate	°C, m³/d	Х	property and design factor
	pH, EC, ORP, DO	μS/cm, mV, mg/L	Х	property of water quality
	Fe ²⁺ , Alkalinity	mg/L(CaCO ₃)	Х	design factor
	Na, Ca, Mg, K	mg/L	Ο, Χ	mass balance for quality control
Lab	Fe, Al, Mn, Acidity	mg/L(CaCO ₃)	Ο, Χ	coal mine contaminants
(ICP, AA, IC)	As, Cu, Zn, Ni, Cd	mg/L	Ο, Χ	metal mine contaminants
	Pb, Hg, Co, U, etc.	mg/L	Ο, Χ	some mine contaminants
	F, Cl, NO ₂ , SO ⁴ ,	mg/L	Ο, Χ	mass balance for quality control


Geochemical characteristics depending on the variables

Geochemical characteristics depending on the variables

Acidity and Alkalinity

Acidity

Alkalinity

Alkalinity = $[HCO_3^-] - [H^+]$ $HCO_3^- + H^+ \rightarrow H_2O + CO_2$

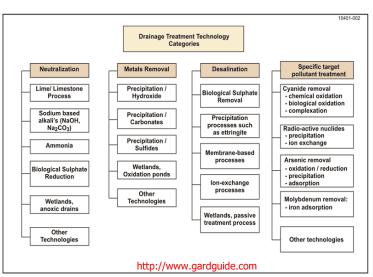
Net acidity $(mg/L CaCO_3) = -Net$ alkalinity = Acidity_{calculated,Eq.(14)} - Alkalinity. Net alkalinity $(mg/L CaCO_3)$ = Alkalinity_{measured} - Acidity_{calculated,Eq}.

Categorization of Mine Water

Geochemical properties of mine water

Туре	pH and mineral acidity	Ore
A	Acidic / Fe and base metal \uparrow	Cu, Pb, Zn, Au, Ag etc.
В	Acidic / Fe and As ↑	Sulfide mineral, limonite, Au
С	Slightly acidic / Mn and base metal \uparrow	Pb, Zn, Mn
D	Neutral / Asî	Au, As
E	Neutral / Cd and Zn \uparrow	Pb, Zn, Sn, W etc.
F	Slightly acidic / Fe, Al and Mn \uparrow	Coal

Control and treatment of AMD



Source Control

- Control of either sulfur compounds, oxygen or water
- Grout Curtains/Wall
- Underground Disposal, Encapsulation

Treatment System

- Passive Treatment
- Active Treatment
- Semi-Active Treatment

Definition

Passive treatment is the deliberate improvement of water quality using only naturally-available energy sources(e.g. gravity, microbial energy, photosynthesis), in systems which require only infrequent(albeit regular) maintenance in order to operate effectively over the entire system design life

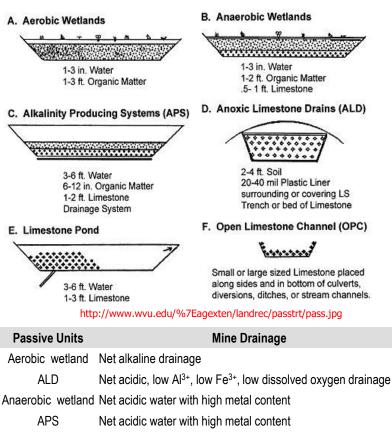
> from William Pulles of South Africa. adopted by the European Union's PIRAMID R&D project. (mine water, 2002)

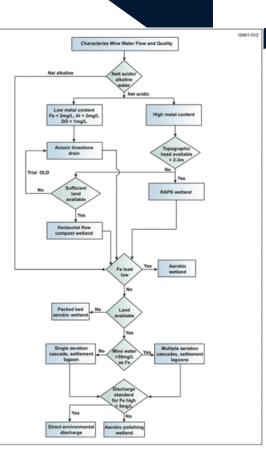
Passive treatments of AMD

Method using natural occurring chemical-biological reactions

- need large area due to a long retention time
- few cases showing uncertain efficiencies
- weakness for seasonal changes of flow-rate and water quality
- minimum maintenance expenses

Type of treatment systems


- Supply of alkalinity
 - Anoxic limestone drain, limestone dumping, diversion well, open limestone channel, limestone pond
- Aerobic/Settling Systems
 - Settling/oxidation pond, Wetland
- Vertical flow systems(VFS)
 SAPS, RAPS


Design factor of passive systems

Flow rate, pH, Net acidity, Net alkalinity, Fe species, Al, DO etc.

Characteristics of Passive Treatment

OLD Net acidic water with high metal content, low to moderate SO₄

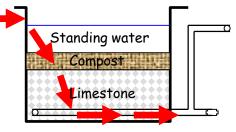
http://www.gardguide.com

Units of Passive Treatment

- Method Settling Pond / Oxidation Pond(Lagoon)
 - Set up to oxidize and precipitate metals of net alkaline water

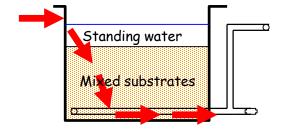
Aerobic Wetland

- Set up to oxidize and precipitate metals of net alkaline water



Alkalinity Producing System (APS)

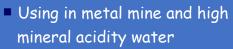
The SAPS consists of an ALD overlaid with organic material; the RAPS consists of an ALD integrated with organic material. (US EPA 2006)


SAPS

(Successive Alkalinity producing System)

RAPS(or SRB Bioreactor)

(Reducing & Alkalinity producing System)


- Mainly using in coal mine water
- Adding alkalinity and then precipitation to Fe hydroxides
- Thinner organic layer and lower activity of SRB

Development

- Short circuiting
- Permeability
- Substrates
- Sludge precipitation

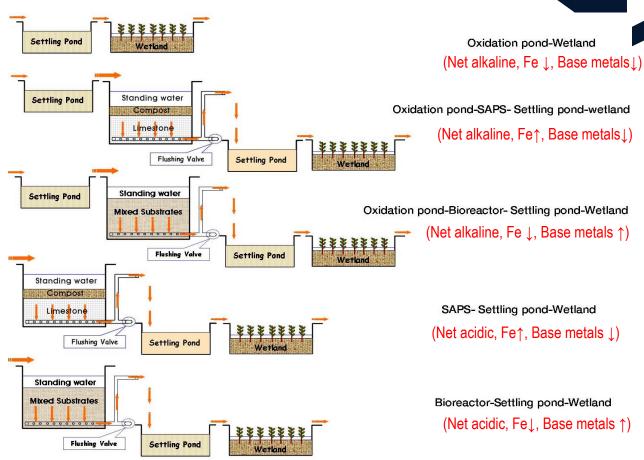
SAPS RAPS



- Adding alkalinity and SRB activity
- Lower permeability than SAPS

I Procedure for the passive systems

Survey and Assessment (1~2 year)



Demonstrative test (1~3 year)

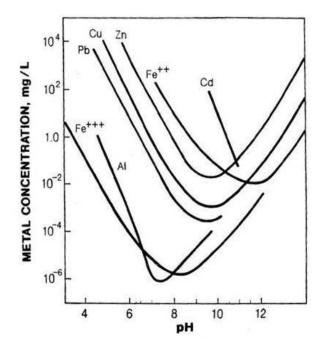
Applications of passive treatment

Case of Passive treatment Systems (Korea)

Active treatment is the improvement of water quality by methods which require ongoing inputs of artificial energy and/or (bio)chemical reagents

(mine water, 2002)

Characteristics of Active Treatment


Use of chemical properties of most heavy metals in AMD

that can precipitate at pH 6~9

metal	Fe ³⁺	Cu ²⁺	Zn ²⁺	Fe ²⁺	Cd ²⁺	Mn ²⁺
рН	3.5	6.8	8.2	8.5	9.8	10.2


- Possible to treat high volume of water and show certain efficiencies
- Need sustainable large maintenance expenses
- Possible to have effective management for seasonal flowrate changes
- Conventional and text-book type method for a long time
- General process composed of coagulation and precipitation steps after neutralization

Neutralization and Precipitation

Metal Hydrolysis (Aubé and Zinck, 2003)

 $CaO + H_2O \Rightarrow Ca(OH)_2$ $Ca(OH)_2 \Rightarrow Ca^{2+} + 2OH^{-1}$

Chemical reagents

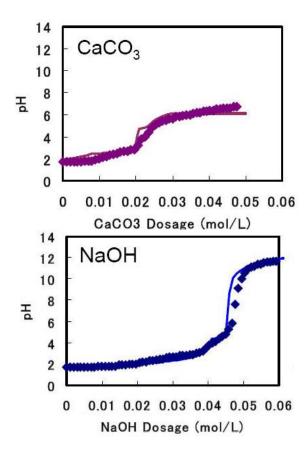
Neutralizers

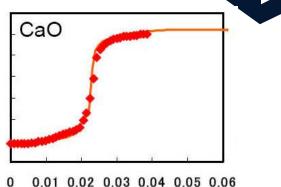
• Sodium hydroxide, calcium oxide, slake lime, sodium carbonate, ammonia, etc

Flocculants

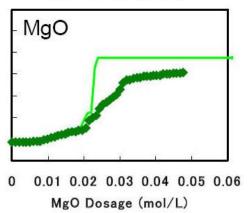
• Iron sulfate, alumium sulfate, sodium aluminooxide, polymer, etc

Oxidants

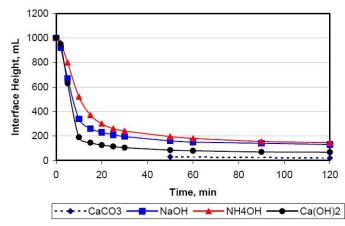

· $Ca(ClO)_2$, NaClO, CaO₂, KMnO₄, H₂O₂ etc

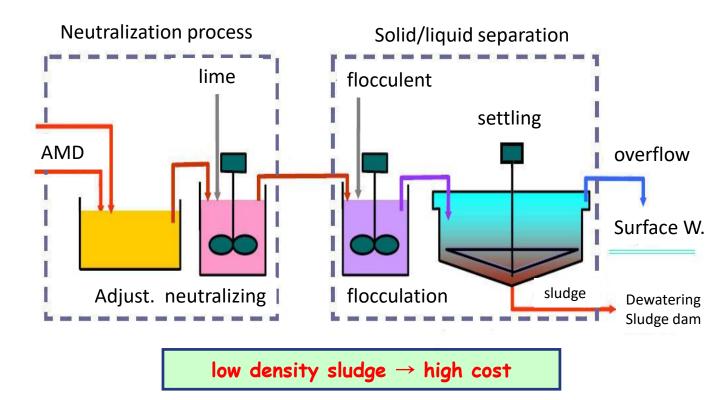

Comparison of Properties of Neutralizer

type	Solubility	Dewatera bility	Reaction Speed	Neutalization	Expense	Conversion factor	Neu. Capacity
Ca(OH) ₂	0	\bigtriangleup	0	0	\bigtriangleup	0.75	90%
CaO	0	\bigtriangleup	0	0	0	0.56	90%
CaCO ₃	\bigtriangleup	Ô	\bigtriangleup		O	1	30%
ΝαΟΗ	O	×	O	O	×	0.8(s.) 784(20%) 256(50%)	100%
Mg(OH)₂	∆ ~ ()	△~ ○	△~○	0	∆ ~ ()	-	-
MgO	△ ~ ()	△~ ○	△~ ○	0	∆ ~ ()	-	-


 * Expense comparison of kmol of OH- equivalent: CaCO₃(\$0.69), Ca(OH)₂(\$2.64), NH₃(\$5.61), Na₂CO₃(\$15.16), NaOH(\$22.56)

PH profiles with the injection of neutralizers


CaO Dosage (mol/L)


I Precipitations depending on neutralizers

Conventional Chemical Treatment System

Sludge Return Process

Suggested as a method for sludge reduction

 Use partial sludge as a seed of precipitation through recycling into the process

Advantages

- Use non-reactive lime
- Increase the sludge density
- Improve the liquid-solid separation
- Reduce the scale of reactor

Process

- MMA process (simple sludge recyle)
- SRR process (sludge return reverse)
- HDS (High Density Sludge) process
- Geco process (MMC process)

HDS (High Density Sludge Process)

Lime + Return Sludge \rightarrow AMD Sludge Density : 20%

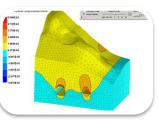
Case of active system (Korea)

03 Introduction of Sanha E&C and their Technology

Business area

Soil Remediation

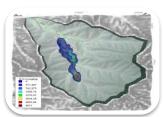
- Heavy Metal, Asbestos, Petroleum Contaminated Soil Remediation
- Ground Water Remediation


Mine Reclamation

- Mine Drainage Treatment
- Tailing Loss Prevention
- Mine subsidence Prevention

R&D

- Environmental ENG.
- Geotechnical ENG.
- Mineral & Resource ENG.


Geotechnical Works

- Tunnel
- Slope
- Monitoring, ETC.

Investigation

Design

Construction

Consulting

Business experience

Main project by business area

Soil remediation (54case)	 Design for soil improvement restoration in GM mine area('22) Restoration of soil Improvement in HGS mine area('22) 	
Improvement of Polluted water quality (25case)	 water quality improvement project of TB mining Industry('22) Coal mine(BR) water purification facility installation('22) 	
Tailings loss prevention(14case)	 Feasibility study for the construction of tailing dam('22) Complete renovation of mineral waste storage facilities ('22) 	(Alexandress)
Prevention and recovery of subsidence (150case)	 Investigation of the ground stability of the SB mine ('22) Design service of ground reinforcement DS mine area ('22) 	
KOMIR R&D (22case)	 Development of soil remediation methods depending on the arsenic contamination type at the abandoned coal mine('21) 	
Ministry of Environment R&D (10case)	 Advanced purification technology based on reduction materials(22) Development of optimal stabilizers considering heavy metal contamination (22) Study on the stabilization of arsenic and heavy metals in China (18) 	
Overseas Project (8case)	 A study on adsorbent for water treatment in rare earth extraction in china('18) Consulting on Malaysia's RHT mine closer plan ('17) Consulting on recovering mining in Malaysia's Mamut mine ('09) 	

Soil remediation

- Precise investigation and feasibility study of contaminated soil
- Design & Construction for improvement, restoration and remediation of contaminated soil
- R&D such as in-situ remediation and soil stabilization technology
- Development and sales of soil stabilizer(EcoSta) for heavy metal contaminated soil

Core Technology – Soil remediation

Soil stabilizer for remediation of heavy metal contaminated soil

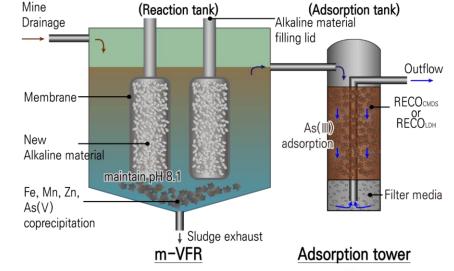
Optimized eco solution for contaminated soil remediation

- Various types for soil condition, pollution materials, usage plan
- Composed by eco friendly materials / Excellent constructability
- Effectiveness verification through National R&D project

I Mine drainage treatment

- Feasibility study of mine drainage treatment
- Design and construction of natural purification facility
- Design and construction of semi active purification facility
- Development and sales of As, Heavy-metal adsorbent $\mathsf{RECO}_{\text{LDH}}$, $\mathsf{RECO}_{\text{CMDS}}$

Core Technology – Water treatment


Arsenic - Heavy metal contaminated water treatment system

- Water treatment for polluted groundwater, mine drainage, wastewater
- Suitable for small scale processing / Excellent maintainability
- Effectiveness verification through National R&D project

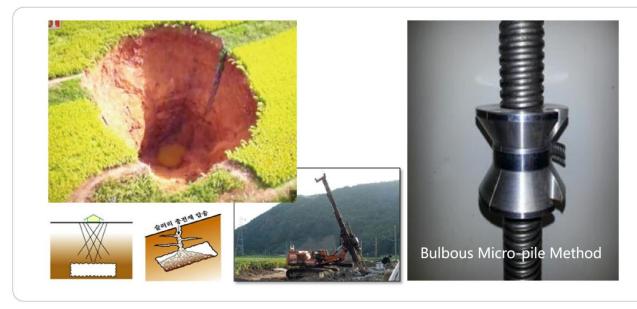
Absorbent

RECOLDH

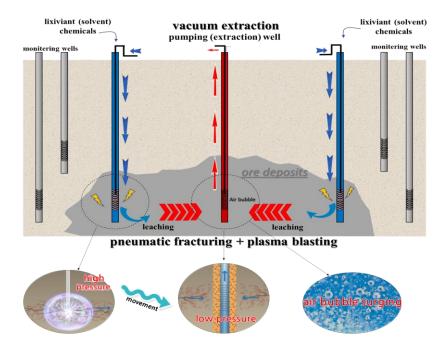
-Water treatment system conceptual diagram-

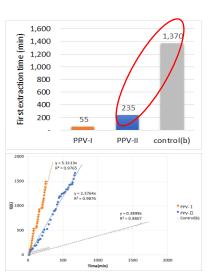
Tailing loss prevention

- Stability assessment of tailing retention area
- Design and construction of tailing retention area
- Design and construction of tailing loss prevention
- Research and development of technology for detoxification and recycling of tailings



Mine subsidence prevention




- Basic and precise survey of the ground stability
- Design and construction for mining ground reinforcement
- Ground subsidence monitoring
- Development and sales of Bulbous micro pile method for ground reinforcement

Core Technology – In situ leach mining

In Situ Leach mining using PPV(Pneumatic fracturing+Plasma blasting+Vacuum)

Mine closure plan

• Key objectives of mine closure plan

Public health & safety

Alleviation or elimination of environmental damage

Consideration of mine closure plan

Land rehabilitation

Social and economic benefits

Physical stability

Geochemical stability

Land use

Sustainable development

• Mine closer plan task for prevention of mining damage

Improvement of polluted water quality

Tailing & Waste loss prevention

Ground & Slope stability

Soil remediation

Mine closure plan

Consulting of mine closure plan

Q&A

Thank you for your attention !

